The repository is a diverse collection of object detection and classification projects, offering various implementations and models for identifying and categorizing objects in images or videos. It serves as a valuable resource for learning, experimentation, and benchmarking in the field of computer vision.
MegaCreater/MakingMachineSmarter 0
AI and ML files
issue openedkeras-team/tf-keras
keras.layers.Activation needs to have activation kwargs (parameters)
I want keras.layers.Activation must have kwargs for activation function like ->
>>> layer = tf.keras.layers.Activation('relu')
>>> output = layer([-3.0, -1.0, 0.0, 2.0])
>>> list(output.numpy())
[0.0, 0.0, 0.0, 2.0]
>>> layer = tf.keras.layers.Activation('relu',dict(alpha=0.2))
>>> output = layer([-3.0, -1.0, 0.0, 2.0])
>>> list(output.numpy())
[-0.6, -0.2, 0.0, 2.0]
I have updated the code at https://github.com/keras-team/keras/blob/v2.11.0/keras/layers/core/activation.py to achieve this, I want to contribute this to official keras. Code is below ->
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains the Activation layer."""
import inspect # check arguments of function (activation)
from keras import activations
from keras.engine.base_layer import Layer
# isort: off
from tensorflow.python.util.tf_export import keras_export
@keras_export("keras.layers.Activation")
class Activation(Layer):
"""Applies an activation function to an output.
Args:
activation: Activation function, such as `tf.nn.relu`, or string name of
built-in activation function, such as "relu".
Usage:
>>> layer = tf.keras.layers.Activation('relu')
>>> output = layer([-3.0, -1.0, 0.0, 2.0])
>>> list(output.numpy())
[0.0, 0.0, 0.0, 2.0]
>>> layer = tf.keras.layers.Activation('relu',dict(alpha=0.2))
>>> output = layer([-3.0, -1.0, 0.0, 2.0])
>>> list(output.numpy())
[-0.6, -0.2, 0.0, 2.0]
>>> layer = tf.keras.layers.Activation(tf.nn.relu)
>>> output = layer([-3.0, -1.0, 0.0, 2.0])
>>> list(output.numpy())
[0.0, 0.0, 0.0, 2.0]
Input shape:
Arbitrary. Use the keyword argument `input_shape`
(tuple of integers, does not include the batch axis)
when using this layer as the first layer in a model.
Output shape:
Same shape as input.
"""
def __init__(self, activation, activation_kwargs:dict=dict(), **kwargs):
super().__init__(**kwargs)
self.supports_masking = True
self.activation = activations.get(activation)
# check activation_kwargs must be a dictionary
assert isinstance(activation_kwargs,dict),'`activation_kwargs` must be dictionay, but got '\
f'-> {type(activation_kwargs)}'
# check all keyword arguments (must be in function)
assert all([key in inspect.signature(self.activation).parameters.keys() for key in activation_kwargs]),\
'Invalid `activation_kwargs`, the valid `activation_kwargs` are '\
f'{list(inspect.signature(self.activation).parameters.keys())[1:]}.'
self.activation_kwargs = activation_kwargs # activation function kwargs
def call(self, inputs):
return self.activation(inputs,**self.activation_kwargs) # pass activation function kwargs
def compute_output_shape(self, input_shape):
return input_shape
def get_config(self):
config = {"activation": activations.serialize(self.activation), }
config.update(self.activation_kwargs) # activation function kwargs
base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items()))
created time in 6 months
push eventMegaCreater/MakingMachineSmarter
commit sha 0472e24fcfa4a248241f2a1052e38582f72f60a6
Add files via upload
push time in 17 days
push eventMegaCreater/Navarambhah
commit sha 0804326e789e29ecacc8afb3591071894ed3fff3
Update README.md
push time in 2 months
push eventMegaCreater/Navarambhah
commit sha 70c33df1eb74ff188b500499d22fff7889468988
deleted.py
commit sha f4799b9848db2b717d5cd5d776cc04e75d274e50
Merge pull request #3 from utsavmahajan/patch-1 deleted.py
push time in 2 months
push eventMegaCreater/Navarambhah
commit sha d65b791dd47f7df1a2a47430139d6872a4634278
Update README.md
push time in 2 months
push eventMegaCreater/Navarambhah
commit sha c9da0e6ee1802c47f3df3a2ba9a005e1a43abd40
Update README.md
push time in 2 months
push eventMegaCreater/Navarambhah
commit sha 0ec424d0338f35bed2fdb572f9a555d2595e6bad
Update README.md
commit sha 7d536db2d69f688f48287d333e55f838b44763d3
Merge pull request #1 from Ajinkya2217/patch-1 Update README.md
push time in 2 months
PR merged MegaCreater/Navarambhah
Images uploaded for preview.
pr closed time in 2 months
push eventMegaCreater/Navarambhah
commit sha af780f60f95d90254079450c8fd1ba56fe689e7d
Add files via upload
push time in 2 months
push eventMegaCreater/Navarambhah
commit sha ea1b67a8fd8ec6b24119f66498357ae54250ccce
Update README.md
push time in 2 months
push eventMegaCreater/Navarambhah
commit sha 9022b627d8763f34c9f50ee0eb26b757dcdb8c0a
Initial commit
push time in 2 months
issue commentkeras-team/keras
Using Middle Layer of Keras Application MobileNetv2
@tanakataiki
# load pre-trained mobile net model
mobilev2_core=tf.keras.applications.MobileNetV2(input_shape=(256,256,3),include_top=False)# load mobileNetV2 base
# inputs : <KerasTensor: shape=(None, 128, 128, 32) dtype=float32 (created by layer 'Conv1_relu')>
mobilev2_core=tf.keras.Model(inputs=[mobilev2_core.layers[4].input],outputs=mobilev2_core.outputs)# setup model for custom layer as inputs
# inputs must be of same shape as required by layer 4, i.e. `expanded_conv_depthwise` : (None, 128, 128, 32)
# bulid custom model using customized mobileNetV2
# define extractor model layers (inputs)
input_A=tf.keras.Input(shape=input_shape,batch_size=None,name='input_A',dtype=None)# cover image input
input_B=tf.keras.Input(shape=input_shape,batch_size=None,name='input_B',dtype=None)# watermarked image input
model_x=tf.keras.layers.Concatenate(axis=-1,name='concatinate_features_01')([input_A,input_B])# concatenate inputs
model_x=tf.keras.layers.Conv2D(32,kernel_size=(3,3),strides=(2,2))(model_x)
model_x=tf.keras.layers.BatchNormalization()(model_x)
model_x=tf.keras.layers.ReLU()(model_x)# add activation layer - outputs shape - (None, 128, 128, 32) (same required for mobileNetV2 custom
extractor_x=mobilev2_core(extractor_x)
extractor_x=tf.kears.....# what ever you want ....
comment created time in 2 months
create barnchMegaCreater/Navarambhah
branch : e85bd525cafb42ac86d3408e373f5dac
created branch time in 3 months
delete branch MegaCreater/Navarambhah
delete branch : 9d053ea2-c920-4154-9540-679ac863bc57
delete time in 3 months
create barnchMegaCreater/Navarambhah
branch : 9d053ea2-c920-4154-9540-679ac863bc57
created branch time in 3 months